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Bifurcations in fluctuating dynamical systems are studied using the ideas of 
center-manifold reduction. The method provides not only a systematic proce- 
dure for the reduction of the system to a small number of variables--but also a 
classification scheme for the different kinds of dynamical behavior possible near 
bifurcation points. The joint probability density factorizes into a stationary 
Gaussian density p ( v / u )  in the fast variables v, and a time-dependent density 
P(u, t) in the slow variables u describing the dynamics on the center manifold 
v = Vo(U). P(u, t) obeys a reduced Fokker-Planck equation that can be written 
in a normal form by means of local nonlinear transformations. Both additive 
and multiplicative white noise are considered, as is colored noise. The results 
extend and formalize Haken's concept of adiabatic elimination of fast variables. 

KEY WORDS: Fluctuations; Fokker-Planck equations; bifurcations; nor- 
mal forms. 

1. I N T R O D U C T I O N  

A n  unde r s t and ing  of the behavior  of systems with m a n y  degrees of f reedom 
usually requires a reduct ion in the mathemat ica l  complexity of the full 

problem. Often certain variables can  be el iminated as being un i mpor t a n t  or 

irrelevant, with the essential physics conf ined to the behavior  of the 
remain ing  variables. This is a basic tenet  of statistical mechanics.  Al though 

considerable  work has been  devoted to effecting explicit reduct ions both  in 
determinist ic  and  stochastic systems, (1-8) much  work remains  to be done 

before the connec t ion  with nonequ i l ib r ium statistical mechanics  is under-  

stood in detail. The methods all share a c o m m o n  theme: some u n i m p o r t a n t  
variables adjust  on  a very short t ime scale, bu t  the quali tat ively impor tan t  
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dynamics occurs on a much longer time scale. Haken (1) has stated, pictur- 
esquely, that the fast-relaxing degrees of freedom are "enslaved" by the 
more slowly evolving ones. In this case, one expects that the fast variables 
may be eliminated by a method that has been termed "adiabatic elimina- 
tion".(1) 

In the deterministic case, these physically motivated approximations 
find rigorous justification in bifurcation theory. (9'~~ When the solution to a 
system of differential equations changes in a fundamental way at some 
critical parameter value, the system is said to undergo a bifurcation. The 
center-manifold theorem (11) characterizes the local behavior of solutions 
near a bifurcation, and provides a justification for the reduction of the 
dynamics to a relatively simple ordinary differential equation called a 
"normal form." The structure of the normal form depends only on the 
number and nature of the eigenvalues of the linearized problem involved in 
the bifurcation, the symmetries of the system, and certain nondegeneracy 
conditions. The normal form approach thus provides us not only with a 
lower-order equation, but also a classification scheme for local behavior of 
systems near their bifurcation points. 

In the present paper we extend the ideas of the center-manifold 
reduction to systems subject to external noise. The effects of perturbations 
are of greatest importance near a bifurcation point of a dynamical system. 
It is precisely for this case that our method is derived. The point here is that 
the insights provided by bifurcation theory for deterministic systems form a 
secure basis for our intuition when noise is present. However, we do not 
claim to make a mathematically rigorous extension of center-manifold 
theory. Rather, our viewpoint is that bifurcation theory provides a natural 
framework for tackling certain probelms involving noisy perturbations. 

Starting from the Fokker-Planck equation corresponding to a system 
of Langevin equations, we find that--near a bifurcation--a reduced Fok- 
ker-Planck equation is sufficient to describe the dynamics after a short 
relaxation time. This reduced equation is, of course, easier to study than the 
original problem, and corresponds to the normal form of the deterministic 
system. Whole classes of starting equations lead to the same reduced 
Fokker-Planck equation, so that again a classification scheme suggests 
itself. Furthermore, bifurcations involving only a few eigenvalues are ex- 
pected to be typical on physical grounds. This justifies, in retrospect, the 
attention given to phenomenological one- and two-dimensional mod- 
els(I2-25): they describe the dynamics near such bifurcations in higher- 
dimensional systems. 

Section 2 introduces the relevant aspects of bifurcation theory. This is 
followed in Section 3 by a description of the reduction scheme for the case 
of additive white noise. The results of this section essentially verify the 
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results of earlier investigations, ~1) although we are able to provide a more 
complete description of the conditional probability distribution of the fast 
variables, and its dependence on the slow variables on the center manifold. 
New results are presented in Section 4, where the reduction procedure is 
applied to the case of multiplicative noise. In Section 5, a specific example 
is discussed which displays a noise-dependent bifurcation. <17) The results 
are compared with those obtained earlier in another parameter regime, {18) 
and a physical interpretation of the differences is offered. Finally, in 
Section 6 we briefly discuss a way of using our method to model the effects 
of nonwhite noise. Our main results are summarized in Section 7. 

2. BIFURCATIONS IN DETERMINISTIC SYSTEMS 

In this section we briefly describe the method of reduction of a 
deterministic system to a lower-dimensional form in the neighborhood of a 
bifurcation point. We emphasize those aspects of the theory that can be 
taken over to the stochastic problem. 

An autonomous n-dimensional (n < m) dynamical system 

,~ = V(x, ~) (2.1) 

where /z is a parameter, has an equilibrium point x0(/~) if F(x0,/z) = 0. 
Without loss of generality, we may take x 0 = 0. The linear stability of this 
point is determined by the eigenvalues of the linearization matrix M(/~) 

7Flx= 0. The equilibrium point undergoes a bifurcation as /~ is varied, 
when one or several eigenvalues cross (transversally) the imaginary axis in 
the complex plane. The linearized problem can be put into Jordan normal 
form by going into the eigenbasis; at the bifurcation point/~o, we may write 
(2.1) in the form 

/! = A(/~0)n + f(u, v,/z0) (2.2a) 

= B(/~0)v + g(u, v,/~0), (2.2b) 

where the matrices A and B have eigenvalues )~ such that Re)~ A (/z0)= 0, 
Re)~B (/~o) =# 0, and f, g are at least quadratic in u, v. For simplicity, we shall 
assume that all eigenvalues of B have negative real part. This assumption is 
not necessary, but allows us to consider the physically interesting case of a 
stable equilibrium losing stability. 

2,1. The Center Manifold 

At the bifurcation, one or several eigenvalues are on the imaginary 
axis. Their eigenvectors span a plane that is tangent at x = 0 to an invariant 
surface called the center manifold (Fig. 1). The remaining eigenvalues have 
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Fig. 1. The center manifold. The fast variables contract onto the center manifold on a fast 
time scale. The dynamics on the center manifold is governed by nonlinear terms only, and 
takes place on a slow time scale. 

negative real parts, and sufficiently close to x = 0 they dominate the 
dynamics in directions perpendicular to the center manifold. As a result, 
trajectories starting off the center manifold contract onto it on a rapid time 
scale, and the subsequent evolution of the system (2.1) occurs on the center 
manifold. Here the approach to an asymptotic state is governed by the 
nonlinear terms, and hence near the origin it occurs on a long time scale. 
For example, at a Hopf bifurcation [Eq. (2.11)], the amplitude r of the 
neutrally stable oscillation evolves as a result of the cubic nonlinearity. 

The center manifold can be obtained as a power series in u, 

v = v0(u)  (2 .3 )  

by an iterative procedure. (26) Consequently, after a short transient, the 
dynamics of the system is described, with exponentially small errors, by the 
system 

li = A (  #0)u + f ( u ,  v0(u ), ~t0) (2 .4)  

with f(u, v0(u ),/~o) given as a power series in u. Since typically only one, or 
at most several eigenvalues cross the unit circle simultaneously, Eq. (2.4) 
represents a drastic reduction in the dimension of the original system (2.1). 
This reduction is justified rigorously by the center-manifold theorem. (11) 
The geometry of the reduction is illustrated in Fig. 1. 

As an example, consider a second-order system, with an equilibrium 
point at the origin, and suppose that we have a bifurcation at which M has 
one zero eigenvalue and one negative eigenvalue. In suitable coordinates we 
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then have 

d o 

\ du  2 + euv  + f v  2 ] 

where 2~ is of order unity, and 0(3)  indicates cubic or higher-order terms in 
u, v. The center manifold is defined by the condition A = 0, where A = v - 
vo(u) .  It follows that 

= u 2 + o ( u  3) 1) o(U) (2.6) 

and the dynamics on the center manifold is given by 

= au  2 + O(u 3) (2.7) 

Note that in the case a v ~ 0 the dynamics do not depend on the curvature of 
the center manifold. 

2.2. Normal Forms 

For multiple bifurcations (i.e., those involving several eigenvalues) the 
analysis can be taken a stage further, and Eq. (2.4) simplified by means of a 
near identity transformation 

w = u + h(u)  (2 .8 )  

where h = O(u2). This is because the reduction is local. The power series 
h(u) is chosen such that order by order as many of the nonlinear terms in 
(2.4) are removed as possible. The terms that can be removed depend on 
the structure of the matrix A(/z0) and any symmetries respected by the 
nonlinear terms. The resulting equation 

= A(/,0)w + k(w,/*0) (2.9) 

is called a n o r m a l  f o r m  of the system (2.1) at the bifurcation point/.t o. All 
problems with the same matrix A and the same symmetry properties, 
satisfying the same nondegeneracy conditions, can be reduced to the s a m e  

normal form by appropriate transformations (2.8). 
We consider two examples. In the case where there is a pair of pure 

imaginary eigenvalues (Hopf bifurcation), A has the Jordan form 

~ o1 
and by means of appropriate transformations (2.8) the dynamics at the 
bifurcation can be put in the form 

i~ = ar  3 + O(r  5) 
(2.11) 

= oa + br  2 +  O(r 4) 
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The next simplest case involves two zero eigenvalues. The center 
manifold is again two dimensional. In the case 

0') 
the dynamics on the center manifold is given by equations of the form 

f~ = v + au 2 + buv + cv 2 + 0 ( 3 )  
(2.12) 

(~ = du 2 + euv + f v  2 + 0(3)  

To put these equations into normal form we introduce the near identity 
transformation 

U = R q- OtU 2 q" flU/) "+" ~{19 2 "q- 0(3)  
(2.13) 

v = ~ + du 2 + euv + ~lv 2 + 0 ( 3 )  

Choosing 8 = - a, 2a - c = b,/3 - 77 = c, c = f, we obtain the normal form 

u = v + 0 (3)  (2.14) 

b = A~ 2 + B~E + 0(3)  

w i t h A = d a n d B = e + 2 a .  

2.3. Unfolding 

The final stage in the analysis involves a consideration of the dynamics 
for parameter values near the bifurcation point F =/~o. An application of 
the center-manifold theorem to system (2.2) augmented with the equation 
/2 = 0, shows that if the equilibrium is preserved, then the dynamics is 
given by 

r162 = A( #)w + k(w,/~o) (2.15) 

with negligible error. In other words, the nonlinear terms can be evaluated 
at the bifurcation point /~o (provided that none of the leading nonlinear 
terms vanish there). This completes the reduction of the system (2.1) near a 
bifurcation to a standard low-dimensional normal form. 

The following four examples are of interest: 
(i) The Transeri t ical  Bifurcation: 

f~ = ( # -  IXr + au2 + O(u 3) (2.16) 

(ii) The Pi tch fork  Bifurcation.  This bifurcation typically obtains when 
the basic system is symmetrical under reflection: 

f~ = ( t~ - t~c) u + au3 + O(uS)  (2.17) 



Bifurcations in Fluctuating Systems 617 

If a < 0, the bifurcation is supercritical (i.e., it gives rise to two new stable 
nontrivial states). 

(iii) The Hopf Bifurcation. Here the amplitude r of the oscillations 
near the bifurcation obeys [cf. example (ii) above] 

= (It - #c)r+ ar 3 + O(r 5) (2.18) 

(iv) A Codimension-Two Bifurcation. Here a second parameter v has 
been adjusted to give two zero eigenvalues when /~ =/~0. To capture the 
generic dynamics near such a bifurcation it is necessary to change v from 
its critical value so that as/~ is increased two eigenvalues pass through zero 
in close succession. The normal form becomes 

. = ~ + 0 ( 3 )  ( 2 . 1 9 )  

= (~, - ~0)~ + (~ - ~0)e + A ~  2 + a ~  + 0 ( 3 )  

Since the unfolding contains two parameters, we shall call this bifurcation a 
codimension-two bifurcation. 

The dynamics described by the normal forms for different problems 
can now be analyzed once and for all. The normal forms thus classify the 
possible dynamics near bifurcations and the conditions under which they 
occur. In a specific problem only the coefficients in k(w) have to be 
computed; the form of k is fixed by the matrix A and the symmetries of the 
basic problem (2.1). In the following sections we shall show how the above 
ideas generalize to noisy systems. 

3. REDUCTION IN THE PRESENCE OF ADDITIVE NOISE 

We now present a reduction procedure for systems subject to additive 
noise. Since the application of our method is entirely analogous for the 
other cases mentioned in Section 2, we give the details for only the 
transcritical bifurcation. The pitchfork, Hopf, and codimension-two exam- 
ples are discussed only briefly�9 

3,1. TranscriUcal Bifurcation 

It is sufficient to apply our reduction procedure to a second-order 
system--generalization to higher-order systems is straightforward. 

As before, assume the origin is a fixed point of the deterministic 
system. Then 

) d t y  y 
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where L is a constant 2 • 2 matrix, N is a vector of nonlinear functions, 
and ~ is Gaussian white noise of intensity 2x, 

( ( ( t ) )  = 0, ((( t)~(t ' ))  = 2~d(t - t') (3.2) 

At the bifurcation point, a linear change of coordinates puts the 
system in the form [see Eq. (2.5)] 

i:]: [00 :j[:j r  io, l d + au2 + buy + cv 2 + 0(3)  + 

dt X [du2+ euv+fv2+ O(3)j r~ 
(3.3) 

where o, r, ~t are constants of order unity (X > 0). 
The object of interest is the joint probability density, which obeys the 

Fokker-Planck equation corresponding to (3.3): 

O,r176 -O,{[au 2 +buv + cv 2 + O ( 3 ) ] ~ }  

- 0 v {  [ - ) t v  + du 2 + euv + fv 2 + O ( 3 ) ] ~ }  (3.4) 

We want to isolate the behavior of ~ near the deterministic center 
manifold, which in the present case is given by equation (2.6). To do this, 
we first introduce the conditional density p(v , t /u)  and the (marginal) 
density P(u, t): 

~(u,v , t )  =p(v, tl u). e(u,t) (3.5) 

After an initial relaxation time of order ~-1, we expect the joint density to 
be confined to a narrow strip, peaked about the center manifold. We thus 
assume that p has the time-independent form 

p(v,  t l u ) = [  A(u____))~r ]'/2exp{ - A ( u ) ' [ v - v ~  (3.6) 

which is a normalized Gaussian in the variable v, with a width that depends 
on u. The self-consistency of this assumption is demonstrated in the 
Appendix. 

By substituting (3.5) and (3.6) into (3.4) and integrating over v on a 
narrow strip centered on the center manifold, we obtain an equation for 



Bifurcations In Fluctuating Systems 619 

P(u, t): 

o , P ( u , t )  = -ou[ ( au2 + bUVo + cvg + o(3))e] 

A' 
- [ , ,u  2 + buvo  + + o(3) 1 e 

- [ - X  + eu + 2fv o + O(2) IP  - 2m'2Ap + 4~o~Av;e 

2 [ 2  A' ( A "  A'2 2Av;2)e  I (3.7) +xo 3 , , P + - ~ 3 ~ P +  2A 4A 2 

where the primes denote differentiation with respect to u. In deriving (3.7), 
we treated the sharply peaked Oaussian (3.6) as a 3 function. We will 
return to this point later. 

We emphasize that our analysis is a local one. Thus, integration of the 
full Fokker-Planck equation generates several "surface terms". Previous 
work along these lines (]) assumed that the Langevin equations were glob- 
ally valid, and consequently ignored these terms. 

By adjusting the function A, we are able to reduce (3.7) so that it 
becomes an equation of continuity for P(u, O. Physically, we then have a 
conserved flow of probability within a band about the center manifold, 
provided we allow the width of the band to vary. 

To achieve this, expand A in powers of u: 

A(u) = A 0 + A]u + O(u 2) (3.8) 

where A 0 and A 1 are constants. We next introduce scaled variables in order 
to explicitly display the relative size of terms appearing in (3.7). With c a 
small quantity, we let 

u = r  x = r  

^ (3.9) 
E3A0 = A0, caA] = A 1 

Next, we substitute (3.8) and (3.9) into (Y7), and ignore terms of order 
E 2. Thus, 

3tP(,~,t  ) = ~ { - 3 a [ a ~ 2 p ]  + ~a23]aP } 

^ 

+ X-- 2~'2A0 + e ~. e - 2 ~ 2 A 1 ] ~ ) P  

(3.10) 

To ensure that P satisfies an equation of continuity, we demand that terms 
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proportional to P cancel. This requires that 

0 = )t - 2x~-2A0 (3.1 I) 

and 

Al = 2od e 
x~ 3 2xr2 (3.12) 

Equation (3.11) expresses the balance between the fast drift toward the 
center manifold and a "diffusion pressure" provided by the noise. 

With these choices for A 0 and A], we are left with a reduced Fokker- 
Planck equation: 

OtP(u,t)  = -O , [au2e]  + xo202u, P (3.13) 

Just as in the deterministic analysis, we can rederive the reduced 
dynamics when the system is not precisely at the bifurcation, but nearly so. 
Introducing the small unfolding parameter /x~ O(c), the reduced Fokker- 
Planck equation now includes a linear drift, 

2 2 OtP(u,t  ) = -O,[( /~u + au2)P] + do O,,P (3.14) 

which is the noisy analog of equation (2.16). Equations (3.11) and (3.12) 
remain unchanged--together with (3.14), they are the major results of this 
section. An alternative derivation is given in the Appendix. 

Before turning to other cases, we would like to return to the integration 
of the full Fokker-Planck equation (3.4). From (3.6), we see that the 
conditional density is 

P ( V l U ) = (  A---)l/2exp{ (3.15) 

According to the theory of distributions, (27) in the limit x$0 (3.15) acts 
(rigorously) like a ~ function. This justifies the integration leading to 
Eq. (3.7). 

3.2. Pitchfork Bifurcation 

If we assume that our system is symmetric under reflection, then 
instead of (3.3) we have 

[:1 I~ ~ d = + au3 + bu2v + cur2 + dr3 + 0(5)  + 

dt )t eu 3 + fu2v + g u v  2 + hv 3 + 0(5) j r~ 

(3.16) 

In this case the center manifold for the deterministic system is given by 
e u3 v = Vo(U ) = ~ + 0(5)  (3.17) 
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The derivation of the appropriate reduced Fokker-Planck equation is only 
slightly different than for the transcritical bifurcation. The Gaussian inverse 
width is now 

A(u) = A 0 --{- A2~/2 --~ O(u 4) (3.18) 

and the proper scaling is 
A 4~ 

U = EU, K = s 
A A ( 3 . 1 9 )  

r  0 = A0, E4A2 = A 2 

Proceeding as in the previous section, we now find that for the pitchfork 

A o = ~./(2K~ -2) (3.20) 

A2 = 3oe f (3.21) 
K,/-3 KT 2 

and the reduced Fokker-Planck equation is 

2 2 ~,P(u,t) = -Bu[ ( t TM + au3) P] + xo 3uuP (3.22) 

where the unfolding parameter /z is now an order c 2 quantity. Equation 
(3.22) is the noisy analog of (2.17). 

3.3. Hopf Bifurcation 

For a Hopf bifurcation, the center manifold is two dimensional. 
Consequently, to apply the reduction procedure, we must start from a 
system which is at least third order. The reduced Fokker-Planck equation 
will involve two independent variables, plus time. 

For example, a third-order system at a Hopf bifurcation can be put in 
the form 

--dt wv = 00 -7~0 v + + 4  (3.23) 

For simplicity, we have assumed that the original system has only a single 
additive-noise forcing term. The Fokker-Planck equation corresponding to 
(3.23) is reduced by assuming that the joint probability density is 

~(u,v,w,t)=[ A(u_V)~r ] ' /2exp(-A '[w-w~ P(u'v't) (3.24) 

where w = Wo(U,V ) is the equation of the center manifold. The inverse- 
width function A may be chosen so that P(u,v,t) obeys the reduced 
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Fokker-Planck equation 

O,e(u,v,t) 

= --~u[(--O~12 + a l u 2 +  b lUl )+ Cl/)2 -1 - dlU 3 + elu2~2+flul)2-+ - gl l )3)e]  

-Ov[( u + a2u2+ b2uv+ c2v2+ <u' + e u2v+J uv + g v3)e] 
2 2 2 + x[ o2O2up + 2orOuvP + r 0~vP ] (3.25) 

where a m . . . . .  g2 are constants appearing in the power series expansions of 
F and G. 

It remains to be seen whether the Fokker-Planck equation (3.25) can 
be simplified by means of transformations of the form (2.8). This is 
discussed in more detail in the following section, where it is found that the 
near identity transformation (2.8) transforms the Fokker-Planck equation 
to the Fokker-Planck equation for the normal form. For the Hopf bifurca- 
tion, it is possible to remove the quadratic terms in u and v entirely--it is 
for this reason that (3.25) includes the cubic terms in the drift. Conse- 
quently, (3.25) becomes, in appropriate variables r, 0, 

Otfi(r,O,t) 

1 0r[(/~r 2 + ar4)fi] _ 30 [ (~0 + br2)fi] + x(ocos0 + rsinO)2O2rff 
= - r  

+ 

+x[-o 2sinOr 0~176 

+ ~E -- 02 75- sin000sin0 

10ofi] K( -- O2COS 0 sin 0 + 2or cos20 + r2sin 0 Cos 0 )0 r r 

2or rSin 0 00si n 0 + r2COSr 0 00si n 0 ] 0 r fi 

2orsinOr 2 00cos0 + 7rZcos 0 Ooc~ O~ 

(3.26) 

This equation may be further reduced to a one-dimensional Fokker- 
Planck equation by eliminating the angular dependence. The rapid rotation 
in the 0 direction suggests that the physically interesting evolution will be 
described by a purely radial density P(r, t). This may be accomplished by 
introducing the conditional probability p(O/r) by 

P(r, O, t) = p(O/r) .  P(r, t) (3.27) 

as in Eq. (3.5). It can be shown that (cf. Ref. 5) the appropriate conditional 
probability is uniform. The final equation for P(r, t) is 

02 -t- T 2 2 (3.28) 1  r[(.r2 + ar"/e ] + Orre O,P(r,t) = - r 

which should be compared with (2.18). 
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3.4. A Codimension Two Bifurcation 

In this section we describe in a little more detail the reduction 
procedure for a codimension-two bifurcation problem in the presence of 
white noise. The elimination of the fast variables proceeds exactly along the 
lines already described. However, since at a codimension-two bifurcation 
the center manifold is two dimensional, the reduced Fokker-Planck equa- 
tion describing the dynamics on the center manifold will involve two 
variables, plus time. In the deterministic problem we saw how, with the aid 
of near identity nonlinear transformations, the dynamics on the center 
manifold could be put into as simple a form as possible--the normal form 
(cf. Section 2). We would like to generalize this idea to stochastic bifurca- 
tion problems. This implies that we have to perform such transformations 
on the Fokker-Planck equation. 

We start with the three-dimensional system, in Jordan form: 

N = 0 + + ~(t) (3.29) 
0 X 

On the center manifold the dynamics is described by the reduced Fokker-  
Planck equation for the system (2.12): 

O,P(u , v , t )  = - 3 , [ ( v  + au 2 + buv + c v 2 ) p ] -  Ov[(du 2 + euv + f v 2 ) p ]  

2 2 + ~0202,,P + 2xor~2uvp + Mr ~vv P (3.30) 

with K = 0(3). The transformation (2.13), applied to this equation, 
generates a Fokker-Planck equation for the density ff(~, ~) defined by 

P ( u , v )  = P ( ~ , ~ )  . O(~ ,~) /O(u ,v )  (3.31) 

To the same accuracy as (3.30), f i  obeys the equation 

O,fi(~,~,t) = - a ~ ( ~ f i ) -  0~[ (d~ 2 + (e + 2 a ) ~ ) f i ]  

+ xo2O2~fi + 2xorO~fi + ~r2a2~ff (3.32) 

i.e., the normal form of the Fokker-Planck equation is the Fokker-Planck 
equation for the normal form. We conclude that a classification of the 
stochastic bifurcation problem follows entirely the classification of the 
deterministic problems. Analogous results hold for the unfolded normal 
forms. 

4. REDUCTION IN THE PRESENCE OF MULTIPLICATIVE NOISE 

The above reduction procedure may be extended to the case of 
multiplicative noise. In this section, this is done explicitly for the pitchfork 
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bifurcation. The results are applied to a concrete example in Section 5. The 
calculations for other kinds of bifurcation are entirely analogous, and we 
omit the details. 

We begin with a second-order system at a bifurcation point which has 
been put into the form 

[:]  [00 ? 1[:]  [ au3+bu2v+cuv2+dv3+O(5)]  d _- + 
dt X eu 3 + fu2v + guv 2 + hv 3 + 0(5) J 

where the k,j are constants. This may be compared with (3.16) for the 
additive noise problem. We have assumed that the white noise ~ multiplies 
the linear terms of the dynamic system. Observe that as the origin is 
approached, the effect of noise diminishes. We expect therefore that the 
joint probability density will be correspondingly more sharply peaked 
about the center manifold. This is indeed what we find. 

The Fokker-Planck equation is 

a,~(u,  v, t) 

-- -au[(au3 + bu2v + cuv2+ dv3 + 0(5) )~]  

- Ov[ ( -?w + eu 3 + fuZv + guy 2 + he 3 + 0(5) )~]  

"l'-g { Ou[ (kllU + kl2t)){ Ou[ (k,l  u -Jr k,2/))~ ] --I- Ov[ (k21u -Jr- k22/))~1 } l 

+ 3v[(k2,u + k22v){Ou[(k,lU + k,2v)~ ] 

* 3v[(k2,u * k22v)~] } ]) (4.2) 

where 2x is the intensity of noise [see Eq. (3.2)]. As before, we factor 
~(u ,v , t )  as 

:~ (u ,v , , )= [  A(u)~ ] ' / 2 e x p { _ A . [ v _ v o ] 2 } . p ( u , t )  (4.3) 

where v = Vo(U) is the center manifold for the deterministic problem, given 
by [see Eq. (3.17)] 

e 3 Vo(U ) = -~ u + O(u 5) (4.4) 
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To obtain an equation for P(u, t), we integrate over v: 

~tP(u't) = -~" I  ( au3 + bu2v~ + cuv~ + dv3o + O(5))P]  

-i" K~U{ [(kl l .-.1- 2k22-2k,zv'o)(k,lU+ k,zvo) + kl2(k2,u+ k2zvo) 

+ [2t - ( fu 2 + 2gUVo + 3hv 2 + 0(4))  

A' (au 3 + 6u% + cu4 + dv~ + O(5))le 2A 

+ K { (k l ,  + k22) 2 + [ (3k l l  + 2k22)(kllU + kl2VO) 

A' 
+/q2(k21u + k22Vo)] 2A 

+(kl lu+kl2vo)2(  _ ~A" + 43 A '2A 2 2Av;2) 

+ 4(k,lu + klaVo)(ka,u + k22vo)Av; 

- 2(~:~1. + k~2Vo)~A + 2(k , ,  + k,~v;) ~ - k , ~ ( ~ l  + ~ v ; )  

( " A' [kl,+kl2V'o] ) + 2(knlu + kl2v~ k12v~ - -A 

- (3k1~ + 2k22)(kll + k,2v;) )P (4.5) 

where the primes denote differentiation with respect to u, and all quantities 
are evaluated at v = v 0. If we put 

1 (A ~ + A1 + Azu2 + O(u2)) (4.6) A(u)  = 7 

and introduce the scaled variables 

A C2~ b/ ~ CU~ ~ =  
(4.7) 

e2A0 = A0, e2A2 = ~x2, A1 --  AI  

we find that we can eliminate the terms proportional to P appearing in (4.5) 
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to leading order by choosing 

Ao_  X 
2Kk~ l (4.8) 

Ax = ~ ([ k l l -  k2z] 2 -  2k,2k2, ) (4.9) 

_ 1 a - f +  2 e  (4 .10)  A2 2xk~ 1 ~:~ 

As anticipated, the joint density (4.3) has an enhanced peak as 
compared with the additive noise counterpart [Eq. (3.6)]. The algebraic 
divergence in the probability density at the deterministic fixed point is a 
familiar feature of multiplicative noise problems, (14'15A7'28) even when the 
noise is not &correlated. (19~ Note that when u = 0 is fixed, the conditional 
density again acts as a 6 function as x$0. 

To leading order, then, we are left with a reduced Fokker-Planck 
equation: 

ote(u,t) = - 3 , [ ( t m  + au3)p] 

-[-Ir ' -1-(-k21-[- 2k,,k22 + kl2k2,)uP ) (4.11) 

where the unfolding p a r a m e t e r / ~  O(u 2) has been included. 

5. AN EXAMPLE: THE VAN DER POL-DUFFING OSCILLATOR 

In this section, we apply the above formalism to the van der Pol- 
Duffing oscillator 

5C = otx -b f l~  + A x  3 -b Bx2~c (5.1) 

As emphasized elsewhere, (]8) this equation is relevant to a wide variety of 
physical phenomena. We treat the problem for three cases: the determinis- 
tic system, the system with an additive noise forcing term, and the system 
with a (linear) multiplicative noise term. 

After writing down the proper equations for the "reduced dynamics," 
we will focus on the long-time behavior. In the deterministic case, the local 
analysis using the center-manifold theorem properly describes the asymp- 
totic behavior provided the initial conditions are sufficiently close to the 
fixed point. However, when noise fluctuations are present, the situation 
becomes somewhat more subtle. In general, the global characteristics may 
be important for a complete description of a dynamical system. 

For example, consider a deterministic system with two stable station- 
ary points. Each point will have its own basin of attraction such that 
trajectories inside a basin will asymptotically approach that fixed point. 
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These basins do not overlap--once inside a particular fixed point's basin of 
attraction, the system cannot leave. Consequently, a local analysis can 
determine all the relevant dynamics for a limited region of phase space. 
However, if noise is added, there can be transitions between basins. These 
transitions will occur on some characteristic time scale T--for low noise 
intensities, T will be large. 

As we have emphasized, our local analysis is expected to be valid after 
some short relaxation time of order ?~-1. In general, however, we cannot 
expect the reduced Fokker-Planck equation to be valid for times compara- 
ble to T. Consequently, we have focused on deriving an evolution equation 
for the probability density. However, there are cases when the asymptotic 
solution of the reduced Fokker-Planck equation is of physical interest. For 
example, this is the case when the global problem contains only one 
stationary point. Alternatively, T may be so large that the dynamics on the 
center manifold effectively reaches its asymptotic form in some characteris- 
tic time t~o, satisfying 

~- l<< t~<< T 

5.1. Deterministic Analysis 

We rewrite Eq. (5.1) as a system of first-order equations, with y = :~: 

+ 

We take A, B, and fl to be negative constants of order unity, and consider 
the bifurcation at a = 0. Then (5.2) describes the equation of motion for a 
unit mass subject to nonlinear damping moving in a quartic potential. As a 
changes sign, the potential changes from a single-well to a double-well 
potential, which is obviously a physically interesting regime. 

It is easy to transform (5.2) so that the linearized problem is in 
diagonal form at the bifurcation point: 

d u o)(ul+ ( 
where 

a = - A / #  

b=-[B+3A/#] 
= - [ 2 B  + 3 A I # ]  

(x-y/Bi 
ylB ] 

d = - [ B + A / f l ]  a n d  (5.4)  
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The equation for the center manifold is (cf. Section 2) 

a 3 v = -~ u + O ( u  5) 

and the dynamics on the center manifold is 

fl = a u  3 - b  O ( u  5) 

When a =/= 0, (5.2) has a small nonzero eigenvalue 

fl ( / ~ 2 )  1/2 

t,= T -  --a-+~ ___-~//~ 

an unfolding parameter, we arrive and using this as 
dynamical equation 

(5.5) 

(5.6) 

(5.7) 

at the reduced 

/ J =  --  ~ u - -  A 3 -a~ + O(u 5) (5.8) 

The asymptotic state of the system will be given by the stable stationary 
points of (5.8): 

( O, when a < O  
c~ ~1/2 (5.9) u ( t ~ ) =  + A-J , when a > 0  

The situation is depicted in Fig. 2-- the name "pitchfork bifurcation" is 
seen to be appropriate. 

. . . . .  -(2/~ 

Fig. 2. The pitchfork bifurcation. The stationary points of (5.8) are plotted as a function of a. 
, stable; .... , unstable. 
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5.2. Additive Noise 

We now examine the system 

At the bifurcation point a = 0, a linear change of variables yields 

(o o 

629 

(5.10) 

o)lut+ ( t+,( 
- a u  3 - 6 u 2 v  - c u v  2 - d v ~  l + 1 / 8 1  

(5.11) 

where (5.4) still holds. The reduced Fokker-Planck equation follows imme- 
diately from Section 3.2: 

a,e(u,t)-- +oo ~,,+ u 3 e + ~ o u u e  (5.12) 

[see Eq. (3.22)]. This equation admits the stationary solution 

A 

where N is a normalization constant. This function changes from single to 
double peaked as a increases past zero (Fig. 3). The peaks are given by Eq. 
(5.9). Since the joint probability density ~ ( u ,  v, t) is just (5.13) multiplied 
by a function peaked about the center manifold, the maxima of the full 
density function coincide with the stable stationary points of the determin- 
istic system. 

u 
o t < O  Ot 0 

Fig. 3. The stationary probability density (5.13) in the case of additive noise. (a) a < 0, 
(b) a > O. 
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5.3. MultiplicaUve Noise 

We now take a in Eq. (5.1) to fluctuate about its mean value: 

-> ~ + ~(t)  

and consider the system of equations 

d x 0 (5.14) 

The same linear change of variables as before yields 

d u ~ _ ~ ( v ) = ( O  % ) ( u ) + (  a u 3 + b u 2 v + c u v 2 + d v  3 ] 
- - a u  3 - -  bu2v - c u l 9  2 - d v  3 ] 

at the bifurcation point. The 
(4.11)] 

- 1 ) ( U ) l  (5.15) 

reduced Fokker-Planck equation is [see 

Of(u,t) +0. u+ u 3 P + - ~  

This admits the stationary density 

(5.16) 

Po(u) = N .  lul(4-'~B/")exp( - B A (5.17) 

The function defined b y  (5.17) has three qualitatively distinct behaviors 
depending on the value of a: 

(i) If a > 4~/f l ,  Po(u = O) = O. 
(ii) If 4 x / f l  > a > 5x/ f l ,  Po(u -- 0 ) ~  oo, but (5.17) is normalizable, 

and thus a valid probability density. 
(iii) If 5 r / f l  > a, then P0 is not normalizable. In this case, the 

divergence at u = 0 is too strong. Since system (5.15) admits the stationary 
solution 

~ ( u , v )  = ~(u)8(v) 

we take this to be the appropriate probability density in this regime. 
Figure 4 summarizes these results for multiplicative noise. 

(5 .18)  
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T 
B(u) 

- 5 K  

a< 1/31 

U U 

- 5 K < a  < - 4____K 

1/31 1/31 

lifo(U) 
I 
I 
I 

Fig. 4. The stationary probability density (5.17) in the case of multiplicative noise. The 
transition points between regimes depends explicitly on the noise intensity x. 

5.3. Discussion 

Comparison of the deterministic and additive noise results for system 
(5.1) confirms our intuitive notions about small random perturbations. In 
both cases, the asymptotic solutions change qualitatively at the parameter 
value a = 0. In line with the usual physical interpretation of statistical 
mechanics, the maxima of the probability density (5.13) correspond to the 
macroscopically observed states, and these coincide precisely with the 
stable fixed points of the deterministic system. This is an encouraging sign 
that we have developed a proper reduction scheme. 

Some new features enter when we consider multiplicative noise pertur- 
bations. There are now three qualitatively distinct asymptotic solutions. 
Furthermore, the positions of the bifurcation points in parameter space 
separating these different solutions depend on the noise intensity. This is an 
example of a noise-dependent bifurcation in a two-dimensional system. 

It had previously been established that the second-order system (5.14) 
displays a noise-dependent bifurcation in the weak damping limit. (~8) The 
present reduction procedure corresponds to a strong damping limit, and we 
find that the bifurcation points are now shifted toward more negative values 
of the "spring constant" - a .  The direction of this shift makes physical 
sense: the more heavily damped the system, the more difficult it is for the 
system to escape the fixed point at the origin. Escape from the origin 
requires either a large deterministic repelling force (more positive a), or a 
larger noise intensity. 

One might imagine that we could avoid the careful reduction proce- 
dure we have presented by recognizing from the outset that it corresponds 
to the strongly damped limit of (5.14). After all, this is the standard 
justification for using the first-order Smoluchowski equation to describe 
Brownian motion of a particle in a potential. (29) A glance at Eq. (4.11), 
however, shows that all four entries in the "noise matrix" appearing in (4.1) 
contribute to the position of the noise-dependent bifurcation. 
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For example, had we analyzed the stochastic differential equation 

0 = f i x  q - a X  "t- A x  3 "t- Bx22 + ix (5.19) 

[this is obtained from (5.14) by ignoring the inertial term], we would again 
find three distinct stationary solutions, but the bifurcation points would 
occur at a = 0 and a -- - K/ft. 

6. MODELING COLORED NOISE 

Another useful application of the present reduction scheme is that it 
enables one to study the effects of noisy perturbations with finite correla- 
tion times. In contrast to &correlated white noise, this physically more 
realistic case is often referred to as "colored noise." 

The importance of colored noise problems is obvious. In particular, 
one might wonder if the phenomenon of noise-dependent bifurcations is 
the result of the singular character of the white noise correlation function. 
(In the case of first-order stochastic differential equations, at least, it has 
been demonstrated that these transitions persist in the presence of finite 
noise correlation times. (19)) 

The usual difficulty encountered is that a process such as 

2 =/zx - x 3 + n(t) (6.1) 

where ~(t) is not ~-correlated noise, does not describe a Markov process in 
x space. Since Markov processes are mathematically easier to handle, it has 
been suggested (~4) that 71 (t) be regarded as the output of a process involving 
white noise input, for example, 

/t(t) = -Xn + ~(t) (6.2) 

where ~(t) is 6 correlated. As is well known, (6.2) leads to ~ being the 
Ornstein-Uhlenbeck process. (14) The point is that the system (6.1), (6.2) 
now describes a Markov process in (x, 77) space. 

The obvious complication is that one must now deal with a higher- 
dimensional phase space. However, under certain circumstances, the reduc- 
tion procedure developed above may be applied to reduce the complexity 
of the Fokker-Planck equation. 

To demonstrate this for the system (6.1), (6.2), we first write it in the 
standard form 

~ 7 ( ~ ) = ( o d  l~ -lxl(x)+(-x3]+(Oe]/,", \ o  / \ ~ /  (6.3) 
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A change of variables diagonalizes the linear problem: 

d (u) _o u + ( (6.4) 
0 0 

The system has a pitchfork bifurcation at bt = 0, and the results of Section 
3.2 are immediately relevant. In particular, we note that the joint density 
function is the product of a time-independent Gaussian centered on the 
center manifold and a slowly evolving function of u. The interesting 
information involves the dependence of the probability density on x, which 
can be obtained by making the change of variables back to (x, ~1), and then 
integrating over ~. 

7. C O N C L U S I O N S  

In this paper we have shown how the ideas of center-manifold reduc- 
tion can be adapted to bifurcation problems in the presence of noise. The 
method, essentially suggested by Haken, (1) enables one to reduce a high- 
dimensional system to a low-dimensional one near a bifurcation point by 
eliminating the "fast variables." We find that the joint probability density 
can be self-consistently factorized into a time-independent Gaussian condi- 
tional density for the fast variables and a time-dependent density for the 
slow variables. Self-consistency is assured by imposing the requirement that 
probability is conserved. This requires the inclusion of surface terms, 
representing the flux of probability out of the region in which a local 
analysis is valid, and demands that the width of the Gaussian density of the 
fast variables about the center manifold depend on the position on the 
center manifold, i.e., on the slow variables. 

In each case we indicated the scaling necessary to provide an interest- 
ing competition between the deterministic dynamics and the noise (either 
additive or multiplicative), and the size of the corresponding domain in 
phase space within which our Fokker-Planck analysis is valid. In terms of 
the small bifurcation parameter/~, we find that for additive noise and the 
(a) transcritical bifurcation (Section 3.1), x = O(/~3), u = O(/~); (b) pitch- 
fork bifurcation (Section 3.2), x = O(/~2), u = O(/~1/2); (c) Hopf bifurca- 
tion (Section 3.3), x =  O(/~2), r =  O(/~1/2), with analogous results for 
multiplicative noise. 

The method we present is a systematic one. It enables us to obtain 
both the conditional density of the fast variables and the reduced Fokker-  
Planck equation for the slow variables. The concept of "normal forms" 
carries over to stochastic bifurcation problems, and enables us to classify 
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the possible dynamics near a bifurcation in terms of normal forms of the 
reduced Fokker-Planck equation. We have seen that to leading order in a 
local analysis these normal forms are simply the Fokker-Planck equations 
for the deterministic problems. The classification thus follows the determin- 
istic classification except for the possibility of noise-dependent bifurcations. 
Many of the simple stochastic bifurcation problems studied thus for can be 
interpreted as describing the dynamics on the center manifold of an 
appropriate higher-dimensional system. 
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APPENDIX 

In this Appendix, we verify that the conditional density p ( v , t / u )  
derived in Section 3.1 is properly treated as independent of time. To do 
this, we assume that p has a time-dependent inverse-width A(u, t), and then 
show that atp is small enough that 

Ot~(u,  v, t) = p (v ,  t I u) . alP(u,  t) (A1) 

to leading order. It then follows that p may be approximated by the time 
independent form (3.6). 

As in Section 3, we write the joint density ~ as a product of the 
conditional density p and the marginal density P [see Eq. (3.5)]. The full 
Fokker-Planck equation (3.4) is 

at[ pP] = - 3 , [  (au 2 + b u v  + cv 2 + O(3))pP] 

- P a v [ ( - ~ v  + du 2 + e u v +  fv  2 + 0(3))/01 

2 2 +  a2a u [ ee  I + 2 a a2 v[ e e l  + eavve (12) 
We integrate this equation over all values of v. If p and avp vanish 

sufficiently rapidly at infinity, we obtain an equation for alP: 

alP(U, t) = - a:[(f)e] + xo:~:e (A3) 

where 

f=--au 2 + b u v + c v  2+ . . .  
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and 

( f )  -= y '_~ f p (  v, t lu)dv (A4) 

Observe that all terms appearing in the expansion in (A4) must be included 
since the integration is not confined to a region near the origin. 

We next assume that p is of the form 

p ( v ,  t l u ) = [  A(u_t)~r ] ' / 2 e x p ( - A ( u ' t ) ' [ v - v ~  (A5) 

Substitution of (A3) and (A5) into (A2) yields 

1 Ou[fP-  ( f ) e ]  - f Q ( u ,  rt) + x -  0og P/P = - T 

- 2rtA()~v - g) + K~'Z(4A% 2 - 2A) 

+ 4~o~[ - A r t e ' / e  - A'~ + Av;  - ArtQ(u, rt)] 

+ xo2[ 2 P '  Q2 AA" - A 'z --p-- Q + + A2 A"rt 2 + 4A'rtv~ 

- 2Av; 2 + 2Artv;'] (A6) 
.1 

where 

A' A'~ 2 + 2ABv; 
Q ( u , ~ ) - -  2 a  

rt = v - v 0 ( u )  

g = du 2 + euv + f v  z + 0(3)  

and primes and dots denote differentiation with respect to u and t, 
respectively. We regard u and rt as independent expansion parameters, and 
thus write 

f ( u ,  rt) = au2 + burr + c~2+ O(u3, U2rt . . . .  ) 

)w - g = Xrt - eurt - hrt 2 + O(u 3, U2~, . . . ) 

TO order rt ~ in Eq. (A6) we have 

_ 1 O.[au2P _ ( f ) p ]  au2A'-- + )t 
2A P 2A 

- e u  + ~o2[ P ' A '  A'2 A A "  - + - ~  + A z 2Av~) 2] 

+ 4~o~-Av~) - 2m-ZA (A7) 
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Consider the scaling [cf. Eq. (3.9)] 

O(.3)_A-,, A5' _O(u 0) 
A 

We may then choose A(u) so that A / A ~ O ( u  2) in (AT)--in fact, this 
requires that A(u) is precisely that found in Section 3.1, Eqs. (3.8), (3.11), 
(3.12). Consequently, 

p / p ~  O(n 1, u z) 

The reduced Fokker-Planck equation (A3) shows P/P~O(u) .  Restricting 
our analysis about the center manifold implies that ~--O(u2), and we 
conclude that 

P/e--o(u), p/p--O(u 2) 
thus validating assumption (A1). 
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